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EQUILIBRIA IN NETWORKS 

We study a model in which two carriers choose networks to connect cities and compete 
for customers. We show that if carriers compete aggressively (e.g., Bertrand-like behavior), 
one carrier operating a single hub-spoke network is an equilibrium outcome. Competing 
hub-spoke networks are not an equilibrium outcome, although duopoly equilibria in 
nonhub networks can exist. If carriers do not compete aggressively, an equilibrium with 
competing hub-spoke networks exists as long as the number of cities is not too small. We 
provide conditions under which all equilibria consist of hub-spoke networks. 

KEYWORDS:Economies of density, hub-spoke networks, competition. 

1. INTRODUCTION 

THEAIRLINEDEREGULATIONACT of 1978 allowed air carriers to set their own 
fares and to fly when and where they desire. Carriers responded by transforming 
their networks into predominantly hub-spoke networks. A large empirical litera- 
ture has developed which focuses on the impact of hubbing on the supply and 
prices of'air services. A number of papers (e.g., Borenstein (1989, 1990), Reiss 
and Spiller (1989), Kahn (1993)) seek evidence of market power by relating entry 
behavior and fares in hub and nonhub markets to measures of hub dominance. 
Other papers (e.g., Brueckner and Spiller (1991, 1994), Brueckner, Dyer, and 
Spiller (1992), Caves, Christensen, and Tretheway (1984)) emphasize economies 
of density and attempt to assess their importance in hub-spoke networks. More 
recently, Berry (1992) and Berry, Carnall, and Spiller (1996) have estimated the 
effect of hubbing on costs and on markups. 

These empirical studies measure economies of density and price-cost margins 
in existing airline networks, but they do not explain how these factors have 
caused hubbing to emerge as the dominant feature. Several types of networks 
other than hub-spoke networks exhibit economies of density and provide scope 
for the exercise of market power. As we shall see, in a strategic environment, 
market power may in fact be higher in nonhub networks. Therefore, it is not 
obvious when and how the interplay between economies of density and market 
power leads carriers to choose hub-spoke networks. 

Hendricks, Piccione, and Tan (1995) and Starr and Stinchcombe (1992) study 
network choice in a monopoly environment. It is shown that, when economies of 
density are present, optimization can lead to hubbing. In Hendricks, Piccione, 
and Tan (1997a), we studied the extent to which a hub-spoke network is a 
deterrent to small-scale entry. The focus in this paper is on competition between 

' w e  are grateful to SSHRC-Canada for financial support and to Diana Whistler for expert 
research assistance. We also thank an editor, two anonymous referees, and the participants in a 
number of seminars for helpful comments. 
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two large carriers who are unrestricted in their choices of networks. We 
investigate the conditions under which hub-spoke networks are equilibria. 

Our model is a two-stage game in which two carriers simultaneously choose 
their networks and then compete for travelers. The carrier offering the shortest 
path has a competitive advantage because length is costly to carrier and traveler. 
Economies of density are modeled by assuming that a carrier incurs fixed costs 
in establishing a network and that these costs exceed the potential profits in a 
point-to-point2 network, even if the carrier is a monopolist. Consequently, 
carriers have to pool travelers with different origin and destination cities on the 
same flights in order to make a profit. 

We consider two kinds of strategic environments. When carriers compete 
aggressively for customers after choosing their networks (e.g., Bertrand-like 
behavior), then monopoly is an equilibrium outcome: all city-pair markets are 
serviced by a single carrier operating a hub-spoke network. There is no equilib- 
rium in which both carriers choose hub-spoke networks, although duopoly 
equilibria in nonhub networks can exist. When carriers do not price aggressively, 
a duopoly equilibrium with competing hub-spoke networks exists if the number 
of cities is not small. We provide conditions under which all equilibria are 
hub-spoke equilibria. 

The theoretical literature on strategic network choice is sparse. To our 
knowledge, no previous studies have provided a characterization of equilibria in 
networks. Berechman and Shy (1993) study entry in a model with three cities 
and show that a hub-spoke network is a more effective barrier to entry than a 
point-to-point network. Oum, Zhang, and Zhang (1995) examine network choice 
in a duopoly model with three cities and argue that hub-spoke networks have 
strategic advantages over point-to-point networks. Zhang (1996) studies a model 
in which two carriers service the same pair of cities from different hubcities and 
one of the carriers invades the other carrier's spoke market. In a more general 
social context with an arbitrary number of individuals, Jackson and Wolinsky 
(1996) study the efficiency and stability of networks formed by self-interested 
individuals who choose their direct links to others. 

The paper is organized as follows. In Section 2, we introduce the model and 
the main assumptions. In Section 3, we study the case of network choice when 
carriers behave like Bertrand competitors. In Section 4, we analyze the non- 
Bertrand case and present existence and uniqueness results for hub-spoke 
equilibria. Concluding remarks follow in Section 5. 

2. THE MODEL 

This section consists of two subsections. In Section 2.1, the formal model is 
presented as a reduced-form game in which carriers choose networks simultane- 
ously. In Section 2.2, the model is interpreted and the main assumptions are 
discussed. 

2 ~ na point-to-point network eveIy pair of cities is serviced by direct flights. 
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2.1. Notation and Assumptions 

There are two carriers, indexed by i = A,B, a set N = {1,2,.. . ,n} of n 2 3 
distinct cities, and individuals living in each city who wish to travel to other cities 
in N. For simplicity, we shall assume that all travel is one-way. In what follows, 
subscripts g, h shall be used to index cities. 

A carrier establishes a direct connection between city g and city h by 
providing nonstop flights each way between the two cities. Thus, one direct 
connection connects a city-pair in both directions. A network is a graph or a set 
of direct connections. Specifically, a network for carrier i is a function X i  : N x 
N -t {O,l} such that Xi(g, h) =Xi(h ,  g )  and 

1 if there is a direct connection between g and h ,  
h )  = 

0 otherwise. 

The size of Xi,is measured by mi = (1/2)C,,, .,Xi(g, h), the number of direct 
connections. The empty network is denoted by 6. 

A sequence of cities {n,, n,, . . .,n,, ,} is called a path if the following 
conditions hold: (i) Xi(n,,  n,, ,= 1for t = 1,. . . ,z, (ii) (n,, n,+ ,) # (n,, n, + ,) for 
t # S, anq (iii) (n,, n,, ,) # (n,, ,,n,) for any t and s. Condition (i) states that 
there is a direct connection between each adjacent pair of cities; conditions (ii) 
and (iii) state that a direct connection cannot be traveled twice, independently 
of direction. The length of the path is z, the number of direct connections. A 
path is called a cycle if the initial and terminal cities are the same. 

Two distinct cities, g and h, are connected in X i  if there exists a path 
{n,, n2 , .  . . ,n,, ,} such that n, =g, n,+ ,= h. X' spans city g if x i ( g ,  h) = 1for 
some h EN. A network Xi is complete if it connects every pair of distinct cities. 
A network Ci  is a component of X i  if it is a maximal, connected subnetwork. 
Formally, Ci  satisfies the following conditions: (i) if Ci(g, h) = 1, then Xi(g, h) 
= 1; (ii) if Ci  spans cities g and h, then g and h are connected in C'; and (iii) if 
C i  spans g and not h, then Xi(g, h)  = 0. 

A network without any cycles is a forest. A tree is a complete forest. Trees 
have the property that every pair of cities is connected by a unique path. A 
network X' of size mi, mi > 0, is a hub-spoke network if there exists a city h, the 
hubcity, such that C, . h) = mi. 

The fixed cost of operating a network is determined by its size. Let F(m) 
denote the costs of a network of size m. F is assumed to be a strictly increasing, 
weakly concave function with F(0) equal to zero. 

We assume that each carrier's operating profits (revenue minus variable costs) 
are additively separable across city-pair markets. In each city-pair market, they 
depend solely on the lengths of the paths chosen by the carriers to transport 
travelers in that market. Let .ir(zi, zJ )  denote the operating profits that carrier i 
obtains from a city-pair market in which it offers a path of length z i  and carrier 
j offers a path of length zJ. If a city-pair is connected only by carrier i, i's profits 
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are denoted by .rr(zi,m) and j's profits, denoted by d m ,  zi), are equal to zero. 
Note that profits are independent of the identity of the carrier. They also 
incorporate any arbitrage restrictions arising from the ability of travelers to 
purchase separate tickets for the segments of an indirect connection. 

We shall assume that a carrier's profits in a city-pair market are nonincreasing 
in the length of its path: 

The inequality reflects travelers' preferences for shorter paths and transport 
costs that increase with length. In the presence of multiple paths connecting a 
pair of cities, Assumption (Al) implies that a carrier cannot gain by using a 
longer path. 

To define the profits of a network, it is convenient to work with a different 
class of functions. We define a connection function r :N x N -t {1,2,.. .co} to be 
a symmetric (r(g, h) = r(h,  g)) mapping which assigns to each city pair (g, h ) a 
positive integer representing path length. Given a connection function 7, its 
length correspondence, T ,  assigns to any integer z E {1,2,.. . ,m} the set of city 
pairs that are connected in r by paths of length z. Formally, 

Let #T(z) denote the cardinality of T(z). For any pair of connection functions 
(r i ,  r j )  and 7"s length correspondence T i, define the expression 

00 


n ( r i ,r i>= ~ ( z ,  h)) -F(#ri(1)/2)x ~ j ( ~ ,  
z=1  T ' ( z )  

A connection function is generated by a network X i  if it assigns m to each 
pair of cities not connected in X i  and, to each pair of cities connected in x i ,  
the length of the shortest connecting path. Given a pair of networks (XA,  XB), 
network profits to carrier A are defined to be equal to n ( r A ,  r B )  where r i ,  
i = A, B, is the unique connection function generated by Xi. Network profits for 
carrier B are defined symmetrically. Note that this definition of profits requires 
carriers to use the shortest path in transporting travelers between cities. For 
simplicity, we have not modeled the choice of paths for city-pairs with multiple 
paths. Assumption (Al) ensures that none of the results of this paper .are 
affected by this restriction. 

We impose two further restrictions on the city-pair profit functions. Define 
.rr,(z) = .rr(z,m) to be the profit that a monopoly carrier earns when it services 
a city-pair market with a path of length z: 

Recall that a point-to-point network is a network in which a carrier offers 
nonstop service in every city-pair market. Condition (A2-i) states that a point- 
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to-point network is not profitable even if the carrier is a monopolist. Notice that, 
given (A2-i), the properties of F(.) imply that 2m.rr,(l) is strictly less than F(m) 
for any positive m. Thus, for a flight to be profitable, it has to carry travelers 
with different destination or origin cities. Condition (ii) states that a complete 
hub-spoke network is profitable: 

(A3-i) ~ ( z ,y) + d y ,  z) 5 .rr,(min{y, zl),  

(A3-ii) z y ( for any y. 

Assumption (A3) is a restriction on the division of operating profits. (A3-i) states 
that the total profits obtained by the two carriers cannot exceed the profits that 
the carrier with the shortest path would earn if the other carrier did not connect 
the pair of cities. ( A 3 4  states that a carrier cannot earn more than monopoly 
operating profits. 

Unless otherwise stated, we shall assume that, if .rr,(z) is positive, it is strictly 
decreasing in z. 

2.2. Discussion 

Our model makes several simplifying assumptions. First, it is implicit in our 
definition of profits that carriers cannot share a traveler's itinerary. This restric- 
tion rules out interlining, which occurs when travelers switch carriers at a 
connecting point enroute to their destination. The main reason for ignoring 
interlining at this stage of the analysis is tractability. We discuss this issue in 
more detail in Section 4. 

Second, we ignore the carrier's choice of direction in allocating its planes. If a 
carrier offers nonstop service from city h to city g, then it must also offer 
nonstop service from city g to city h. The interpretation is that the planes fly 
back and forth between pairs of cities. This restriction on traffic flows is made 
primarily for tractability, although it can be defended as economically efficient. 

Third, we assume that the capacity of the plane flying between a pair of cities 
is essentially infinite. This makes sense if the (daily) travel demand between 
city-pairs is low. The following quote from Robert L. Crandall, chairman of 
American Airlines, which appeared in American Way (September, 1992), the 
airline's magazine, describes the kind of situation that we have in mind: 

On an average day, the typical flight from Albuquerque to DFW carries 123 passengers. 
Of those, only forty-three are bound for DFW. Two are bound for Atlanta, three for 
Boston, two for London, and seventy-one for twenty-eight other destinations. 

The quote suggests that Crandall regards the number of daily travelers from 
Albuquerque to each of the thirty-one destinations mentioned in the quote to 
be too few for American Airlines to offer daily nonstop service between 
Alburquerque and each of the thirty one cities. 

If planes are not capacity constrained, then the size of the fleet depends only 
upon the number of direct connections or links, and not upon the volume of 
traffic or design of the network. Hence, fleet costs are part of fixed costs. Fixed 
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costs also include the costs of station and ground site facilities, ticketing and 
promotion, and administration. Since these costs may increase less than propor- 
tionally with the number of direct connections, F(m) is assumed to be weakly 
concave. 

The factors that vary in proportion to the volume of traffic on a direct 
connection are stewardesses, meals, and to some extent fuel.3 The proportional- 
ity assumption permits a decomposition of network variable costs in terms of 
city-pair markets. The variable cost assigned to each city-pair market is propor- 
tional to the number of passengers serviced in that market times the length of 
the path used. These costs will vary with network design. For example, in a 
linear network of size m, some travelers have to take as many as m flights to 
reach their destination. By contrast, in a hub-spoke network, no one flies more 
than two flights. Thus, costs related to volume tend to be much lower in a 
hub-spoke network than in a linear network, although they are likely to be small 
relative to fixed costs. A more important factor in network design may be the 
time costs of travelers. 

Finally, we assume no substitutability in demand across city-pair markets. This 
assumption, together with our linearity assumption on network costs, implies 
that network profits are additively separable across city-pair markets. It permits 
an interpretation of the T(., .)'s as a reduced form description of the equilib- 
rium of the second stage in which the carriers compete for travelers in city-pair 
markets given their network choices. 

In summary, our model is intended to describe networks of cities where 
demand between any pair of cities is low and economies of density are essential 
for profitability. Each plane has to carry connecting passengers to be profitable, 
and the number of planes is determined primarily by the number of direct 
connections. Most of the network costs are fixed, and the main cost of path 
length arises from the traveler's cost of time. The model does not apply to city 
pairs like New York-Los Angeles where direct traffic volumes are so high that 
more than one plane is required to service the market. In these cases, the direct 
traffic is sufficient to exhaust any economies of density. 

3. MONOPOLY HUB-SPOKE EQUILIBRIA 

In this section, we study the effects of aggressive price competition on 
network choice. Our focus is on situations in which equilibrium profits to a 
carrier in a city-pair market can be positive only if it has an advantage over its 
rival. In our model, path length measures travel costs to both the carrier and the 
traveler. Thus, a carrier has an advantage only if it offers a shorter path. 
Formally, this condition can be stated as 

3 ~ u e lconsumption depends in part upon weight. Approximately 60% of fuel cost is incurred in 
takeoff and landing so distance is not as much of a factor as one might expect. 
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Condition (BC) is likely to be satisfied when the market is not differentiated 
either horizontally or vertically. The length of a path is a measure of its 
"quality." Under the assumption that consumers have the same willingness to 
pay for quality and do not care about the identity of the airline, the second-stage 
game in each city-pair market is essentially a Bertrand game. In equilibrium, if 
both carriers offer the same "quality," each carrier will price at marginal cost 
and earn zero profits. If the carriers offer different "qualities" (i.e., path 
lengths), then the carrier with the lower "quality" path is priced out of the 
market and the carrier with the higher "quality7' path captures the premium that 
consumers are willing to pay for the shorter path plus any cost differential. 
Hate, a carrier can earn positive profits only if it offers a shorter path. 

The problem that arises when consumers are sufficiently differentiated in 
their willingness to pay for "quality" is that the carriers may be able to use 
length to price discriminate and earn positive profits. For example, suppose 
business travelers are willing to pay a lot more for a direct flight than vacation 
travelers. If carriers A and B offer the same quality product, each earns zero 
profits, which is consistent with condition (BC). But suppose carrier A offers a 
direct flight and carrier B offers a connecting flight. Then carrier A may find it 
more profitable to set a high price and sell only to business travelers than try to 
capture the entire market at a lower price. If so, carrier B can profitably service 
the vacationers at a lower price, assuming its marginal costs are not too high. 
Profits fajl to satisfy condition (BC). They also fail to satisfy the monotonicity 
property of Assumption (Al). 

Let H, denote the set of hub-spoke networks of size m .  The main result of 
this section is the following. 

THEOREM1: Suppose (A1)-(A3) and ( B C )  hold. 
(a) No pair ( x A ,  x B )  such that xiE H,,, 0 < m i  s n  - 1, i = A ,  B, is an 

equilibrium. 
(b) If X AE Hn-, and X B  = 4 ,  or X B  E Hn- and X A= 4 ,  then ( x A ,  x B )  is 

an equilibrium. 

Part (a) of Theorem 1 states that a duopoly equilibrium in hub-spoke 
networks does not exist. Thus, vigorous competition is not consistent with both 
carriers operating hub-spoke networks of any size. Part (b) states that there is 
an equilibrium in which one carrier chooses a complete hub-spoke network and 
the other does not establish any network. In this case, the hub-spoke network 
deters entry and the industry is a monopoly. 

The intuition behind the monopoly result is easily explained. When carrier i 
chooses a hub-spoke network of size n - 1, it services 2(n - 1) city-pair markets 
with direct flights and the remaining ( n  - l)(n - 2) city-pair markets with 
one-stop flights. Carrier j can earn positive profits only in the latter set of 
markets by offering direct flights. However, it cannot obtain a cost advantage in 
any associated connecting market. Hence, by condition (BC), its profits on a 
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direct connection cannot exceed d l ,  2), which, by Assumptions (A2), (A3), and 
concavity of F(.), is not sufficient to cover network h e d  costs. 

The example depicted in Figure 1illustrates that duopoly equilibria in nonhub 
networks can exist. 

EXAMPLE1: There are five cities. Carrier A has a network that connects cities 
2 and 3 with a one-stop flight through city 1.Carrier B also connects this pair of 
cities but it offers a path that stops at cities 4 and 5. In addition, it offers 
nonstop service between cities 1and 4. The profit terms that are positive are as 
follows: %(I) = d l ,  3) = 1, d l ,  2) = 0.8, .ir,(2) = ~ ( 2 ~ 3 )0.5. All other profit = 

CARRIER A 


CARRIER B 


FIGURE1 
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terms are zero. Fixed costs are given by F im)  = 2.2m. It can be verified that this 
pair of networks is an eq~i l ibr ium.~  

The nonhub configuration is an equilibrium because B is indifferent between 
servicing the (2-3) market with a path of length 2 or 3; with either path, B 
obtains zero profits since A is servicing this market with a path of length 2. If B 
chooses a path of length 2 by hubbing at city 4, then A's best reply is 4 ,  the 
empty network. However, if B chooses the nonhub network with a path of length 
3, A's best reply is the one depicted in the figure. 

A necessary condition for existence of nonhub duopoly equilibria is that path 
length is costly to consumers and/or carriers. To make this claim more precise, 
we state the following theorem. 

THEOREM 2: Suppose (A1)-(A3) and consider the limit case in which (a)  
T(Z, y) = 0 for Z, y < and (b) n(z,m) = 77 for any z < m. Then ( X A ,  X B )  is an 
equilibrium if and only if X i  = 4 and Xi  is a tree for i # j. 

Condition (a) states that if both carriers offer paths connecting two cities, 
then each carrier earns zero profits in that city-pair market. Condition (b) states 
that a carrier earns a fixed amount of profit in any city-pair market that it 
services and its rival does not. Both conditions make sense only if path length is 
costless Gee., marginal costs are zero and consumers do not care about path 
length). 

Clearly, under (a) and (b), any pair of networks ( X A ,  x B )  in which X i  = + 
and Xj  is a tree is an equilibrium. Necessity follows from network externalities: 
if two components in a network are profitable, then combining them will 
increase profits since it enables the carrier to access with only one additional 
direct connection a number of new markets equal to the product of the sizes of 
the components. 

The conclusions of Theorem 2 can be sharpened considerably if one considers 
a small perturbation of the limit case defined by conditions (a) and (b). Since the 
space of networks is finite, the set of equilibria following a small perturbation 
must be contained in the set of equilibria in the limit case. However, a carrier is 
no longer indifferent among all trees. A hub-spoke network yields higher profits 
since it connects every city pair with a path of length no greater than 2. Hence, a 
small perturbation selects equilibrium pairs (XA,  X B )  such that xi= 4 and XI 

is a hub-spoke network of size n - 1. 

4. DUOPOLY HUB-SPOKE EQUILIBRIA 

The monopoly result of Theorem 1 provides an interesting benchmark. 
However, in our view, its relevance is limited. Carriers are likely to find ways to 
"soften" the competition for customers and avoid marginal cost pricing in 

w e  are very grateful to Diana Whistler for developing a program to compute best replies to an 
arbitrary network. Note that the number of possible networks is equal to 2n(n- ' ) /2 .  
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city-pair markets where neither has an advantage. The deeper issue is whether 
hub-spoke networks can be an equilibrium when they are not ruled out on the 
grounds of profitability. Do duopoly hub-spoke equilibria exist, and perhaps 
more importantly, are they likely to be the only equilibria? 

To address these questions we need to assume that connecting flights are 
profitable. More precisely, we shall replace condition (ii) of Assumption (A21 by 

Assumption (A4) requires profits to be positive in city-pair markets where both 
carriers offer a one-stop connection. Furthermore, the number of cities reached 
with a one-stop connection from any city has to be sufficiently large that profits 
from the associated connecting markets can exceed the fixed costs. 

Assumption (A4) will be satisfied if airlines can differentiate their product and 
build consumer loyalty (e.g., frequent flyer programs). It will also be satisfied in 
a model where carriers choose quantities rather than prices. It should be noted, 
however, that quantity competition in city-pair markets cannot be justified in the 
usual way as a reduced form of a two-stage game in which firms first choose 
capacity and then price (see Kreps and Scheinkman (1983)). In our model, a 
direct connection has essentially infinite capacity. Consequently, the quantity 
game has to be viewed as a reduced-form model of tacit collusion. 

In characterizing the set of equilibria under (A1)-(A4), the following property 
of .rr(. ,.) will prove to be important. 

DEFINITION:T is quasi-submodular if for any pair of positive integers (2, y) 

and quasi-supermodular if the opposite inequality holds.' 

To understand why modularity matters, suppose carrier j has a direct connec- 
tion in one market and a one-stop connection in another market. In the 
submodular case, carrier i's payoff in these markets is lower if it matches path 
lengths than if it uses a direct connection against carrier j's one-stop connection 
and a one-stop connection against carrier j's direct connection. The converse is 
true in the supermodular case. 

Standard models of airline differentiation (assuming consumers do not care 
about length and marginal costs are constant) under either price or quantity 
competition generate profit functions that are submodular. The same is true of 
homogenous or vertically differentiated markets under quantity competition. 
Supermodularity tends to occur in models where airlines collude explicitly on 
price (see Appendix B of HPT (1997b)). The essential feature of these models is 
that carriers have to sell tickets to earn revenues. They cannot collude efficiently 
by allocating all of the market to the carrier offering the shortest flight and 

' ~ c t u a l l ~ ,  is quasi-submodular or quasi-supermodular what matters for our results is whether .rr 

on the sublattice, f2 = ((1,1),(1,2),(2,1),(2,2)}. 
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letting that carrier make transfers to the other carrier. The problem, of course, 
with models of collusion is that it is not clear why the two carriers are not also 
colluding on networks. In our view, submodularity is the more plausible descrip- 
tion. 

4.1. Existence of Hub-Spoke Equilibria 

We show first that, if a duopoly is viable, carrier i's best response to a 
hub-spoke network of size n - 1 is a hub-spoke network. The relative locations 
of the two hubcities and the sizes of the hub-spoke networks depend upon the 
properties of the profit function. 

LEMMA 1: Suppose (A1)-(A4) hold. If the set of best replies to a complete 
hub-spoke network with hubcity h does not contain a complete hub-spoke network, 
then it contains a hub-spoke network of size n - 2 that does not span h. 

The argument consists of two steps. We show first that, if carrier i chooses a 
complete hub-spoke network, then carrier j's profits from an arbitrary network 
with fewer than n - 1 direct connections can be bounded by the profits of a 
hub-spoke network of size n - 1 or n - 2. When this bound is achieved by a 
hub-spoke network of size n - 1, the relative locations of the hubcities are 
determined by the modularity properties of the profit function. In the second 
step, we show that the same networks can be used to bound the profits of 
arbitrary networks of size greater than n - 1. 

The best reply to a hub-spoke network of size n - 2 may or may not be a 
hub-spoke network. Additional restrictions on the profit function are needed to 
ensure existence of hub-spoke equilibria. One approach is to require that the 
best reply to a hub-spoke network of size n - 1 is a hub-spoke network of size 
n - 1. Define 

THEOREM3: Suppose (A1)-(A4) hold and F(n - 1) -F(n - 2) < F,. 
(a) If 7r is quasi-supernodular on R ,  X i  E Hn- = A ,  B, and X A=XB, then 

( x A ,  XB)  is an equilibrium. 
(b) If 7r is quasi-submodular on R ,  xiE Hn- ,, i =A,  B, and xA# x B ,  then 

( x A ,  x B )  is an equilibrium. 

The condition of the Theorem states that a carrier must be able to earn 
positive profits in city-pair markets in which it offers a connecting flight and its 
rival offers a direct flight. In the submodular case, it implies that a carrier will 
want to establish a direct connection between the two hubcities, assuming n is 
sufficiently large. In the supermodular case, it implies that using the same 
complete hub-spoke network as its rival is more profitable than any network of 
size n - 2. 
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4.2. Existence of Nonhub Equilibria 

One may be tempted to argue that a sufficient condition for all equilibria to 
be hub-spoke equilibria is that connections longer than two are not profitable. 
Under this restriction, if a carrier wants to service every city-pair market 
profitably with a nonhub network, it would have to choose a larger, more costly 
network. The following example, depicted in Figure 2, illustrates that the 
situation is considerably more complex. 

EXAMPLE2: There are six cities. Carrier A's network directly connects the 
following city pairs: (1,4), (1,5), (1,6), and (3,5). Carrier B's network directly 
connects city pairs (1,2), (2,3), (3,4), and (3,6). Neither network is complete. The 
positive profit terms are as follows: ~ ( 1 ,  z) = 1for z 2 3, .n(l,l) = 0.2, d l ,  2) = 

0.4, ~ ( 2 ,  z )  = = = 0.15, .n(2,3) =0.5 for z 2 4, ~ ( 2 ~ 1 )  0.01, ~ ( 2 ~ 2 )  0.2. All other 
profit terms are zero. Note that the only connections that are profitable are of 
length less than 3. Fixed costs are given by F(m) = 2.2~2. It can be verified that 
each carrier's network is the unique best reply. 

CARRIER A 


CARRIER B 


FIGURE2 
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Hubbing allows carriers to service more city-pair markets with a one-stop 
flight. In Example 2, if carrier A hubs at city 1 by dropping the (3-5) direct 
connection and adding a direct connection between cities 1and 3, it can service 
the (4-3) and (3-4) markets with a one-stop connection rather than a two-stop 
connection. However, the gains from this transformation may be small relative 
to decrease in monopoly profits associated with the (3-5) and (5-3) markets, 
which have gone from ~ ( 1 )  to Intuitively, carrier A is better off ~ ~ ( 2 ) .  
sacrificing a couple of indirect markets by locating its direct flight to capture a 
market not serviced by carrier B. Hubbing at other cities involves similar 
tradeoffs. 

It is worth noting that the nonhub duopoly equilibrium in Example 2 is not 
the only equilibrium. Hub-spoke equilibria in which each carrier chooses four 
direct connections centered in distinct hubcities also exist. However, these 
hub-spoke equilibria are less profitable. Profits to each carrier are equal to 1.0 
in the hub-spoke equilibria and to 1.8 in the above nonhub equilibrium. 

We shall show that the following condition rules out nonhub equilibria: 

(-45-i) ~ ( 1 ,  ~ ( 2 ~ 2 )  s )  - s))z )  - _< inf ( ~ ( 2 ,  ~ ( 3 ,  for any z .  
S 

(AS-ii) 1 z > 2 ,  z for any z .  

Assumption (A5-i) penalizes paths of length 3 or more relative to shorter paths 
and imposes an upper bound on the difference in profits between direct and 
one-stop connections. More precisely, it states that the difference in profits 
between a direct and a one-stop connection is small relative to the difference 
between a one-stop and a two-stop connection, independently of the path 
lengths offered by a rival. Condition (ii) states that direct flights are always more 
profitable than one-stop flights. 

THEOREM mf. If ( x A ,  X B )  is 4: Suppose (A1)-(A5) hold, n > 5 and F(m) = 

an equilibrium, then Xi, i =A,  B is a hub-spoke n e t ~ o r k . ~  

The proof of Theorem 4 is quite involved and we break it up into a series of 
lemmas. We first consider networks that have n - 1or more direct connections 
and show that a hub-spoke network of size n - 1is the most profitable of these 
networks, independently of the rival's network. Lemma 2 presents a technical 
result that may be of independent interest to graph theorists. Define L to be the 
number of city-pairs in a network that are connected only by paths of length 
equal to 3,4,. .., .The number of cities that are directly connected to a city g 
is known as the degree of g. Let D denote the maximum degree achieved in the 
network. 

6 ~ h i stheorem holds for n 1 5  as well. The proof for this case is different and involves tedious 
circulations. It is omitted. 
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LEMMA2: Consider a network of size m and suppose that m 2 n - 1 and n > 5. 
Then L 2 max{0,2(2(n - 1) -m -D)}. 

Lemma 2 establishes a lower bound on the number of city-pairs that are 
connected only by paths of length greater than 2 in any network of size n - 1or 
larger. For example, a network containing a hub-spoke subnetwork of size n - 1 
has a city with degree n - 1, which implies a nonpositive value for the lower 
bound. Since L is zero in such a network, the inequality is satisfied. In a circle 
network, the degree of each city in a circle network is 2, so the lower bound is 
2(n - 4). It is easily checked that the number of city-pairs connected by paths of 
length 3 or more is n(n - 5). Note that, when n is equal to 5, all city-pairs are 
connected by paths of length 2 or less and the bound fails. 

Lemma 3 establishes the dominance of hub-spoke networks of size n - 1in 
the subset of networks with n - 1or more direct connections. 

LEMMA3: Suppose (A1)-(A5) hold, n > 5, and F(m) = mf. If a networkXi of 
size mi is a best reply and mi 2 n - 1, then X i  E H,,- ,. 

The proof reflects the effects of economies of density and declining prof- 
itability with path length. We first bound the profits of a candidate network by a 
connection function that has m - n - I fewer direct connections but is other- 
wise identical to the candidate network. In dropping these direct connections, 
we ignore the impact on connecting markets and work with a connection 
function that does not necessarily represent a network. This step requires that 
the loss in operating profits not exceed the reduction in fixed costs from 
dropping a direct connection. The linearity of F(m) combined with Assumption 
(A2) ensures that this condition is always ~at isf ied.~ Lastly, we apply Lemma 2 
and Assumption (A5) to show that the profits of a hub-spoke network are an 
upper bound on the profits of the connection function that is obtained from the 
candidate network by dropping direct connections. 

The next step in the proof involves evaluating networks that are smaller than 
n - 1. 

LEMMA4: Suppose (A1)-(A5) hold and F(m) = mf. If a networkxi of size mi 
is a best reply and mi In - 1, then each component of X i  is a hub-spoke network. 

Lemma 4 establishes that any network that has fewer than n - 1 direct 
connections must consist of a collection of hub-spoke components. The intuition 
for ruling out nonhub components is similar to that of the previous lemma. 

The remaining step of the proof involves showing that each carrier prefers a 
single hub-spoke network to a collection of hub-spoke networks. The reason is 
network externalities: if each hub-spoke component is profitable, then combin- 

7 ~ nalternative assumption under which Lemma 3 and Theorem 4 hold is that F ( m )  -F ( m  - 1) 
exceeds 2 r M ( l )for every m. 
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ing them increases profits. Several cases need to be considered depending upon 
the locations of the hubcities. 

REMARK1: In the context of airline networks, Assumption (A51 should be 
interpreted as a restriction on consumer preferences. It requires travelers to 
marginally prefer direct to one-stop connections but to strongly prefer one-stop 
to multi-stop connections. Consequently, it is easily satisfied (together with 
Assumption (A4)) in models of vertical differentiation, provided carriers com- 
pete in q~anti t ies.~ To determine the empirical relevance of Assumption (A5), it 
would be useful to have measures of the premiums that travelers are willing to 
pay for fewer stop-overs. 

Another industry where Assumption (A51 is plausible is express cargo ser- 
vices. Since Federal Express established the first hub-spoke network in 1973, its 
major competitors, UPS, DHL, and the U.S. Postal Services, have also estab- 
lished hub-spoke network operations based in, respectively, Cincinnati, Indi- 
anapolis, and Louisville. In this industry, consumers have strong preferences for 
next day delivery. Their demands may exclude connections with more than one 
stop. 

REMARK2: Theorem 4 rules out equilibria in networks other than hub-spoke 
networks,but makes no statement about their size. It is not hard to find 
examples in which the equilibria involve incomplete hub-spoke networks of 
varying sizes. Additional restrictions on rr and F as in Theorem 3 are required 
to ensure completeness. 

Also, pure strategy equilibria may not exist. For example, suppose the number 
of cities is 4, F(m) = 2.2m, and profits are as follows: d l ,  1) = 0.5, d l ,z ) = 1 
for z 2 2, ~ ( 2 , l )  = 0, .rr(2,2)= 0.25, ~ ( 2 ,  z) = 0.5 for z r 3. All other terms are 
equal to zero. It can be verified that there is no pure strategy equilibrium in this 
example. 

REMARK3: We have assumed throughout this paper that interlining is not 
allowed. Interlining is essentially a bargaining problem. One issue that arises is 
the timing of the negotiations, that is, whether carriers agree to interlining 
routes simultaneously with or after they choose their networks. The other issue 
is the specification of equilibrium profits in city-pair markets serviced by 
interlining paths. On the first issue, we believe that the appropriate approach is 
to assume that interlining negotiations occur after networks are chosen. Thus, 
carriers choose networks noncooperatively but are allowed to negotiate profit 
shares in specific city-pair markets. Of course, carriers will anticipate the 

or example, suppose consumer 0's utility from purchasing a trip of length z at price p is given 
by U = V(z)O - p ,  where V(z) is a decreasing function. His utility if he does not purchase a trip is 
zero. Here 0 is distributed according to some distribution F and marginal costs are assumed to be 
zero. It is easily verified that the profit functions (under quantity competition) are submodular and 
satisfy Assumptions (Al)-(A4). Furthermore, if V(2)does not differ much from V(1) and V(z) is 
small for z 2 3, then (As) is also satisfied. 
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outcomes of such negotiations in their choice of network. In particular, paths 
that lie in a carrier's network can be used by that carrier as credible outside 
options to interlining routes. 

We intend to study the problem of interlining in more detail in a subsequent 
paper. Our preliminary results suggest that interlining affects network prof- 
itability only if (i) they connect cities that are otherwise not connected or (ii) 
they are shorter than the paths offered in the carriers' own networks. Neither 
situation is present when one of the carriers has a complete hub-spoke n e t w ~ r k . ~  
Consequently, hub-spoke equilibria remain equilibria (Theorems lib), 2, and 3) 
when interlining is permitted conditional on network choice. However, interlin- 
ing does affect the profitability of incomplete and nonhub networks, which raises 
the possibility of additional equilibria. 

5. CONCLUSIONS 

Aggressive competition leads to a monopoly outcome if one of the carriers 
chooses a complete hub-spoke network. However, duopoly equilibria can exist. 
In Example 1, carriers are able to position their networks so that there are no 
markets in which both carriers offer the same path length. Every city-pair 
market is effectively serviced by only one carrier, the one with a length 
advantage. The local monopoly power conferred by this advantage must be 
present in some connecting markets for duopolies to exist in a Bertrand-type, 
competitive environment. A complete hub-spoke network does not allow for this 
possibility and it is in this sense that it deters entry. Furthermore, this monopoly 
outcome is the only equilibrium if the gain from a length advantage is small. 

When carriers earn profits in city-pair markets where neither has a length 
advantage, then duopoly equilibria in hub-spoke networks can exist. However, 
contrary to views expressed in the literature, strategic play does not appear to be 
the most crucial factor in the selection of hub-spoke networks. In our model, a 
monopolist always chooses a hub-spoke network whereas duopolists may not. 
Strategic factors determine whether a carrier will try to match or mismatch the 
lengths of its connections against those of its rivals. A carrier can realize this 
objective with a hub-spoke network if its rival network is also a hub-spoke. 
However, the same objective can lead to a nonhub network if the rival's network 
is nonhub. Furthermore, as Example 2 shows, hub-spoke equilibria can be 
Pareto-dominated (from the carriers' viewpoint) by nonhub equilibria. Nonhub 
networks raise average costs of service but may allow the carriers to price less 
aggressively. 

9 ~ nthe United States, prior to deregulation in 1978, entry restrictions caused airline networks to 
be incomplete and nonhubs. The only path between many pairs of cities often consisted of several 
direct connections offered by different carriers. However, after deregulation, hubbing emerged and 
interlining traffic as a share of connecting traffic fell from 38.8% in 1979 to 4.5% in 1989 
(Bamberger and Carleton (1993)). 
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In the U.S., airlines operate networks that appear to be predominantly 
hub-spoke. However, they contain more than one hubcity and subnetworks that 
are point-to-point operations. The former may reflect distance factors1° that 
lead carriers to operate regional hub-spoke networks. The latter, which gives the 
network a two-tier structure, can be explained as a failure of symmetry in 
demand and Assumption (A2). The volume of direct traffic between some 
city-pairs may be sufficiently large to profitably support a direct connection. 
Further work is needed to explore the theoretical implications of relaxing these 
assumptions. 

The larger empirical question that this paper raises is the significance of 
departures from a single hub-spoke network. If significant, the issue is whether 
they are the outcome of strategic interaction, as shown in Examples 1and 2, or 
of factors excluded from our model such as demand asymmetries or distance 
and scheduling constraints. If not significant, then our model suggests that 
pricing is not Bertrand. 
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APPENDIX 

We begin with a lemma that is not stated in the text but is fundamental to the results. The proof 
is a minor modification of Theorem 2 in Hendricks, Piccione, and Tan (1995) and is not given. 

LEMMA0: Suppose (A21 holds. Then the optimal monopoly network is a hub-spoke network. 

PROOFOF THEOREM1: (a) Suppose that (XA,  X B )  is an equilibrium and that xAand xBare 
hub-spoke networks. Let N' denote the set of cities spanned by x i ,  and n' the number of cities in 
N' ,  i =A,B. Also, let q be the number of cities in NA nNB. Thus, the number of city pairs 
connected by both A and B is q(q - 1). Also, if q = n', (BC) implies that carrier i's city-pair profits 
can be positive only for directly connected city-pair markets. Hence, by (A2) and the properties of 
F(.), q Imin{nA- 1, nB - 1). 

Suppose first that either A and B have the same hubcity or the hubcity of carrier A is not in N ~ .  
Since A's direct connections are never matched with B's indirect connections, the profits of carrier A 
can be bounded by 

''A referee has pointed out an intriguing analogy between our model in which all cities are 
equally distant from each other and the Dixit-Stiglitz model in which all products are equally distant 
from each other. 
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Note that this network profit can be achieved by carrier A with a hub-spoke network with a hubcity 
not in NB. Hence, our claim follows if we show that if A adds one direct connection to a city in NB, 
its network profits increase. Doing so, A's network profits are 

Subtracting (P.1) from (P.2) yields 

The properties of F imply that (P.3) is positive if 

By (M),  %(2) > 0. Since (P.l) is nonnegative, the claim is proved if 

Note that ( M )  and the properties of F(.) imply that (P.1) is negative when q 2 nA- 1. Hence, 
q < nA - 1. Our claim then follows since (P.4) simplifies to (nA -q)  - (nA-q)2 < 0. 

Suppose now that carrier A's hubcity is in NB but different from carrier B's hubcity. First note 
that if carrier B's hubcity is not in NA, repeating the above step for carrier B would suffice. Thus, 
assume that carrier A directly connects the two hubcities. This implies that q 2 2. Since a ( l , l )  = 0, 
the network profits of carrier A are 

where the term multiplying vM(2) is obtained noting that, of q(q - 1) city pairs connected by both 
carriers, 2(q - 1) are directly connected by carrier A. If v(1,2) = 0, (P.1) is again a bound on A's 
network profits and the claim can be proved as above. Suppose that d l ,  2) > 0. Then, by dropping 
the direct connection between the hubcities and adding a direct connection from carrier q's hubcity 
to a nonhubcity in NB, carrier A increases profits. Since q 5 nB- 1, such transformation is possible 
and the claim follows. 

(b) Suppose X'  is a hub-spoke network of size n - 1. Since carrier i connects every pair of cities 
with a path whose length is either one or two, (BC) implies that carrier j's profits from any network 
X' of size m j  > 0 are bounded by m j 2 ~ ( 1 , 2 )  -~ ( m j )Imj2vM(1)-F(mi) < 0, where the inequal- 
ities follows from (A3) and (A2). Hence, carrier j is best off not connecting any cities. It follows from 
(A2) and Lemma 0 that the optimal network for carrier i is a hub-spoke network of size 
n - 1. Q.E.D. 

PROOFOF THEOREM2: Conditions (a) and (b) imply that X i  contains no cycles. By dropping one 
direct connection in the cycle, the number of connected city-pairs is unchanged. Hence, fixed costs 
are reduced and operating profits are unaffected. 

Suppose xAand xBare forests but not trees. Recall that a component of x A ,  denoted by c A ,  
is a maximal connected subnetwork of x A .  Given a component CA,  let vAdenote the set of cities 
spanned by CA and u A  the number of cities in v A .  Select an arbitrary city g E VA and let t be the 
number of cities in vAconnected to g in xB(possibly zero). Carrier B connects at least t(t - 1) 
pairs of cities in VA. Let mA be the size of xAand consider 

Since xAis an equilibrium network, (P.5) is nonnegative for at least one component. Letting CA be 
that component, we have that t < uA - 1 since 2mA %- <F(mA). 

Now suppose carrier A connects city g to a city in vA.Then, its gain in network profits is, by the 
properties of F(.), at least 
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Multiplying (P.6) by (uA - 1) and manipulating the expression, we obtain 

Since (P.5) is nonnegative and t <uA - 1, (P.7) is positive. Hence, xAmust be a tree. It then 
follows from (a) that carrier B cannot earn any city-pair profits since all city-pairs are connected in 
x A .  B's best response is then the empty network. Therefore, under (a) and (b), ( x A , X B )  is an 
equilibrium if and only if xi is a tree and = 4. Q.E.D. 

PROOFOF LEMMA1: Let xBbe a hub-spoke network of size n - 1 and consider the best reply 
for carrier A. (A41 implies that the empty network is not a best reply since a hub-spoke network of 
size n - 2 which does not span the hubcity of xByields positive profits. Let xAbe a best reply 
network with mA direct connections, and let s denote the number of cities directly connected to the 
hubcity of xBin both networks. We proceed in several steps. 

The first step is to show that the profits of xAwith mA ~n - 2 can be bounded by the profits of 
a hub-spoke network of size n - 2 or size n - 1. 

Suppose that s 2 1. In this case, the network profits of carrier A from the pair ( x A ,  x B ) ,  denoted 
by ZIA, can be bounded as follows: 

The above inequality is obtained as follows. First, (Al) allows us to substitute a(2, .) for any a ( z ,  .), 
z > 2. Second, consider the component of xAthat contains carrier B's hubcity and suppose that this 
component has m' direct connections and spans k cities. By Hendricks, Piccione, and Tan (1995, 
Lemma 11, the maximum number of connected city pairs in the component is m'(mf + 1). Using the 
definition of a component, it then follows that k Im' + 1. Applying Lemma 1 again, the maximum 
number of city-pairs connected in xAis k(k - 1) + (mA-m'XmA -m' + 1). Of these, 2mA are 
directly connected by carrier A (i.e., d l ,  1) and a(1,2) terms). The number of nonhubcities 
indirectly connected by A to B's hub is (k - 1 - s), so the number of a (2 , l )  terms is 2(k - 1 - s). 
The number of a(2,2) terms is then bounded by [k(k - 1) + (mA-m'XmA -m' + 1) - 2mA - 2(k 
- 1 - s)]. This last expression is smaller than [mA(mA - 1) - 2(mA - s)] for m' 5mA. 

If a is quasi-submodular, s = 1 determines an upper bound. By (A4), a(2,2) is positive. Since 
ITA is positive, the properties of F(.) imply that setting mA =n - 1 determines again an upper 
bound. Hence, 

The bound given in the last line can be achieved by a hub-spoke network of size n - 1 located at a 
nonhubcity in xB. 

If a is quasi-supermodular, then set s = m A .  Applying the same argument as above, one can 
show that ZIA is bounded by the profits of a hub-spoke network identical to xB. 

Now suppose that s = 0. Then carrier A does not service any of the markets directly connected by 
carrier B. The network profits of carrier A from the pair (XA,  X B )  can then be bounded as follows: 

Since the right-hand side of the above inequality is positive, applying the usual argument one can 
show that ITA is bounded by the profits of a hub-spoke network of size n - 2 that does not span the 
hubcity of XB. This concludes the first step. 
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The next step of the proof consists of showing that the profits of a network xAwith mA2 n - 1 
are also bounded by the profits of a hub-spoke network of size n - 1 or n - 2. Suppose first that 
s 2 1. ( A l )  implies that 

If a ( z i ,z j )  is quasi-submodular, we obtain 

Denote the right-hand side of the above inequality by A*(mA)and note that A*(n- 1) is achieved 
by a hub-spoke network of size n - 1 centered in a nonhubcity in xB.Suppose that A*(mA)> A(n 
- 1) and A*(mA)2 0. Let E be the smallest mA for which A*(mA)> A*(n- 1) and mA > n - 1. 
Then, A*(E)> A*(E - I ) ,  which simplifies to 2a(1,2)- 2a(2,2)> F(m)-F(m - 1). Since the 
right-hand side of the above inequality is nonincreasing in Z,A*(mA)is strictly increasing for 
mA2 E. Thus, A*(mA)< A*(n(n- l ) / 2 ) and, by quasi-submodularity, 

Then, by (A3-i)and (A2), A*(n(n- 1)/2)I n(n- l ) a M ( l )-F(n(n- 1)/2)< 0. A contradiction. 
If a ( z i ,  z j )  is quasi-supermodular, 

Using the same argument as in the submodular case, one gets again a contradiction. 
Suppose now s = 0. Then carrier A does not connect any markets directly connected by carrier B 

and xAdoes not span B's hubcity. Hence, 

Proceeding as in the previous two cases, one can show that (A21 and (A3-i)imply that an upper 
bound is attained when mA = n - 2. This bound is achieved by a hub-spoke network of size n - 2 
not spanning the hubcity of xB. Q.E.D. 

PROOFOF THEOREM3: Let xBbe a hub-spoke network of size n - 1. It follows from Lemma 1 
that carrier A's best reply can be restricted to the set of hub-spoke networks of size n - 1 and the 
set of hub-spoke networks of size n - 2 not spanning the hubcity of x B .The claim then follows by 
comparing the profits of these networks. Q.E. D. 

PROOFOF LEMMA2: Suppose first that there exists a city h' that is directly connected to at most 
one city, say h ,  and let d, denote the degree of h. Then 

Suppose next that every city has a degree higher than one. Since C,. ,d, = 2m, it follows that 
m 2 n. If the city with maximum degree has degree strictly greater than 2(n - 1)-m - 1, then the 
claim is satisfied since L > 0. 
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Recall that D is the maximum degree and suppose that D I 2(n - 1)-m - 1. Note that (i) the 
number of city-pairs connected by paths of length two is bounded from above by C ,  ,dh(dh - 1); 
and (ii) the number of city-pairs connected by paths of length one is C,, ,dh. Thus, the number of 
city-pairs connected by paths of length two or less, n(n- 1)-L, is bounded from above by 
X I , ,  ,(d,)'. Fixing m and D, consider the following maximization problem: 

choose {x,],,, to maximize z(x,)' subject to 2 I X ,  I D  and zx ,  = 2m.  
h € N  EN 

Since the objective function is convex, the solution admits at most one x ,  in the interior of the first 
constraint. The other x,'s must be equal to either 2 or D. Let A be the integer that solves 
2(n - A) + d + ( A- 1)D = 2 m ,  for some d such that 2 I d I D. 

Note that if D = 2, then m = n and Ch,N(d1,)2= 4n. Hence, L 2 n(n  - 1)- 4n. Our claim 
follows if n(n  - 1)- 4n 2 2[2(n- 1)- n - 21, which holds for n 2 6. 

Next, suppose D > 2. The maximized value of the above objective is 

where k solves 2(n - k ) + kD = 2m. The inequality follows noting that 

and the equality follows by relabelling since d = 2(D - d ) / ( D  - 2) + D(d - 2 ) / ( D  - 2). Then 
L 2 n(n  - 1)- 4(n - k )  - k ~ ' .Therefore, our claim follows if 

for 2 <D < 2(n - 1)-m - 1. Substituting for k ,  the inequality simplifies to 

Since D > 2, it follows that m r n + 1 and the left-hand side is nonincreasing in D. Setting 
D = 2(n - 1)-m - 1, we get 

The left-hand side is minimized at m = 3n /2  - 1/2.  Thus, the above inequality holds if n2- 8n - 5 
r 0, which holds for n 2 9. The reader can verify that (P.8) holds for the cases n = 6,7,8 for 
m > n + l a n d  D > 2 .  Q.E.D. 

PROOFOF LEMMA3: Without loss of generality, we fix B's network and consider the best reply for 
carrier A. The proof is by contradiction. Suppose that X A  is a best reply to X B .  Let 7' denote the 
connection function generated by xi and h* be a city spanned by X A  whose degree achieves the 
maximum degree DA. Let LA denote the number of city-pairs in xAthat are connected only by 
paths of length strictly greater than 2. 

Case I: Suppose that D~ = n - 1. If xAis not a hub-spoke network, then m A  > n - 1. It then 
follows from (A2)  that dropping direct connections between city-pairs ( g ,  h )  such that g, h # h* 
increases network profits. Thus, a hub-spoke network centered in city h yields higher profits than 
X A .  

Case 2: Suppose next that D~ < n - 1 and m A  2 [2(n- 1)-D A ] .Network profits from xAare 
given by 

m 

U ( T ~ , T ~ )= z ~ r ( z , ~ ~ ( g , h ) )- m A f .  
2'1 ( g , h ) ~ T A ( ~ )  

These profits can be bounded as follows. 
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(i)For every ( g ,  h )  E r A ( z )  and z > 2, replace ~ ( z ,  r B ( g ,  h)). r B ( g ,  h ) )  with ~ ( 2 ,  
(ii)Select 2(mA - ( n  - 1)) city-pairs (g ,  h )  E r A ( l )  such that g, h # h*. For 2[(n - 1)-D A ]  of 

these city-pairs, replace ~ ( 1 ,  rB(g ,  h ) )  with ~ ( 3 ,  rB(g ,  h)). For the remaining 2[mA - 2(n - 1)+ D A ]  
city-pairs (which is nonnegative by assumption) replace ~ ( 1 ,  rB(g ,  h)). rB(g ,  h ) )  with ~ ( 2 ,  

(iii)Drop m A  - ( n  - l ) f  terms. 

( A l )  ensures that Step 1 does not lead to a decrease in network profits. 

(A2) implies that Step 2 combined with Step 3 increases network profits since m A  > n - 1. Let i 


denote the connection function obtained from T~ by Steps 1-2 and r its length correspondence. 
W e  have that 

(P.9) lT1(rA,rB)< lT1(?,TB) 

= x = ( l , r B ( g , h ) )+ = ( 2 , r B ( g , h ) )  
( g , h ) € f ( l )  ( g , h ) ~ f ( 2 )  

+ x ~ ( 3 ,  - ( n  - 1 ) f .r B ( g ,  h ) )  
( g , h ) € f ( 3 )  

Note that, letting # denote the cardinality of  a set, 

# f ( 1 )  = 2(n - I ) ,  #1;(2) = n ( n  - 1) - 2(2(n- 1) -D A ) ,  # f ( 3 )  = 2(n - 1 -D A ) .  

Now consider the profits o f  a hub-spoke network centered in city h* and denote its connection 
function by r*. W e  bound these profits from below by replacing ~ ( 1 ,  r B ( g ,  h* ))r B ( g ,  h* )) with ~ ( 2 ,  
in each city-pair market ( g ,  h*) such that i ( g ,  h*) # 1. The number of  such markets is 2(n - 1 -DA). 
Let P denote the connection function associated with this transformation and r its length 
correspondence. By (AS-ii) and using the fact that D A  < n - 1, we obtain a strict lower bound for 
the profits of T* : 

(P.10) 1T1(7*,rB)> U ( P , r B )  

= r ( l , r B ( g , h ) )+ x r ( 2 , r B ( g , h ) )- ( n  - 1 ) f .  
( g , h ) ~ P ( l )  ( g , h ) ~ P ( 2 )  \ 

Define S = ( (g ,  h)li(g, h )  = 1 and ?(g, h )  = 2) to be the set of  city pairs that are assigned a 1 by i 
but not by P.  Note that #S = 2(n - 1 -DA).  Subtracting the bound in (P.9) from the one in (P.10) 
then yields 

I T ( ? , T ~ )  x [ ~ ( l , r ~ ( g , h ) )lT1(i,rB)- = - ~ ( 2 , ~ ~ ( g , h ) ) l  
( g , h ) ~ S  

+ x [ r ( 3 ,  r B ( g ,  h ) )  - ~ ~ ( g ,~ ( 2 ,  h ) ) ]10. 
( g , h ) ~f ( 3 )  

The inequality follows from the fact that #S = # f ( 3 )  and (A5). The claim then follows by (P.9) and 
(P.10). 

Case 3: Finally, suppose D~ < n - 1 and mA[2(n- 1)-DA].  Profits from r A  need to be 
bounded as follows: 

(i)For every ( g ,  h )  E r A ( z )  and z r 3, replace a ( z ,  r B ( g ,  h ) )  with ~ ( 3 ,  r B ( g ,  h)). 
(ii)Having done the transformation in Step 1, select L~ - 2[2(n- 1)-m A  -D A ]  city-pairs with 

~ ( 3 ,  r B ( g ,  h)). By Lemma 2, this transformation is feasible i f  r B ( g ,  h ) )  and replace them with ~ ( 2 ,  
n > 5. 

(iii) Select 2(mA - ( n  - 1)) city-pairs (g ,  h )  E T A ( l )  such that g, h # h*. For each city-pair, 
replace rr(l,rB(g, h ) )  with ~ ( 3 ,  h)).~ ~ ( g ,  

(iv)Drop m A  - ( n  - l ) f  terms. 
Let 7 denote the connection function generated from r A  by Steps 1-3. By construction, the 

cardinality of  the sets r ( l ) ,  p(2), and r ( 3 )  induced by 7 is the same as the sets f ( l ) ,  1;(2), and 
f ( 3 )  in Case 2. The rest o f  the proof for this case proceeds in exactly the same manner as in 
Case 2. Q.E.D. 
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PROOFOF LEMMA 4: Once again, we fu;B's network and prove the claim for carrier A. Recall 
that a component of X A  is a maximal connected subnetwork of XA.  Select a component cAand let 
vAdenote the set of cities spanned by c A .  The number of cities in vAwill be denoted by uA and 
the number of direct connections in CA is given by rA. By definition, r A  2 uA - 1. 

Note first that, if r A u A  - 1, there exists a city that is directly connected to at most one city, say h,  
with degree d,,. Then, as in the proof of Lemma 2, the number of city-pairs connected by paths of 
length strictly greater than two is at least 2[2(uA - 1) - r A  - d,]. A straightforward adaptation of 
the argument given in Case 3 of Lemma 3 shows that cAmust be hub-spoke. 

Suppose then that r A  2 u A .  Since mA ~n - 1, there exists a city h not in vA.Consider a 
network obtained by modifying xAas follows: (i) connect h city directly to each city in v A ;  (ii) drop 
all of the direct connections in CA. The transformation in (i) adds to A's network profits at least 
uA(2min,{~(l ,2)) -f )  and transformation in (ii) subtracts at most 

where min and max are taken over the set of path lengths in carrier B's network. By (Al) and (A2), 
( rA  - uA)(2 max,{.rr(l, 2) - ~ ( 2 ,z)} - f )  5 0. By (A5), min,{.rr(l, z)) > max,{dl, z) - ~r(2,z)).  
Hence, profits increase. Q.E.D. 

PROOFOF THEOREM4: By Lemmas 3 and 4, any nonempty equilibrium network, x', i = A, B, is a 
collection of hub-spoke components. (A4) implies that 4 is never a best-reply to a hub-spoke 
network or to its'elf and Lemma 0 implies that the best reply to 4 is a complete hub-spoke network. 
Therefore, X i  # 4, i = A,B. We will now show that it is always profitable for carriers to combine 
hub-spoke components into a single hub. 

Case I (Shared hubcity): Suppose that the equilibrium networks, X A  and x B ,  have hub-spoke 
components, cAand CB, with the same hubcity, labelled as h,. Let r i  denote the number of direct 
connectiohs in C' and Vi the set of cities spanned by c'.Let s denote the number of cities that are 
directly connected to h,  in cAand CB. We will show that a shared hubcity is consistent with 
equilibrium only if r' = s = n - 1, that is, cAand cBare identical, complete hub-spoke networks. 

Consider first the subcase in which s = 0 and r A  + r B< n - 1. Then there is a city h 6L vAU VB. 
Note that h must be connected in some other component of X A  to a city g in vBdifferent from 
h,, as depicted in the top panel of Figure 3. If not, directly connecting h to h,, carrier B gains 
27riw(l)+ rB27riw(2)-f. It can be easily verified that this expression is positive as the network 
profits from cBare nonnegative. Consider a network obtained by modifying X A  as follows: (i) 
connect directly all of the nonhubcities in vAto city g;  (ii) drop all of the direct connections in CA. 
By this transformation carrier A obtains the network depicted in the bottom panel of Figure 3. The 
reader can verify that: (i) all city-pair markets connected in cAby paths of length equal to two are 
still connected by paths of the same length; (ii) the same number of ~ ~ ~ ( 1 ) ' s  as in cAis retained 
since, by definition of components and the hypothesis that s = 0, g is not connected by either A or B 
to the cities in vA.In addition, the carrier obtains ~ ( 2 ; )  terms from connecting each of the 
nonhubcities in vA to cities directly connected to g in X A .  By (As), these terms are positive. 
Hence, if s = 0, then r A  + r B= n - 1. 

We show next that if s = 0, then r' =mi .  Suppose, on the contrary, that mA > rA. Then, X A  
must span nonhubcities in vBwith a component other than CA. Label one such city as g and then 
repeat the transformation described above. The claim then follows. Hence, s = 0 implies C' = X i .  

Finally, we show that s = 0 cannot be an equilibrium. By the previous steps, carrier A's network 
profits from xAare 

Carrier A can realize the same profits with a hub-spoke network that spans the same set of cities as 
xAbut has a different hubcity, say city g. With this network, if A adds a direct connection between 
city g and a nonhubcity in B's network, then its network profits increase by 

(P.11) implies that this gain is positive. Hence, s = 0 cannot be an equilibrium. 
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CARRIER A 

CARRIER B 

FIGURE3 

We now consider the subcase in which s > 0. Select a city g E vAn vB,g # h,. By definition of 
hub-spoke components, g is directly connected only to h,. Profitability of this connection implies 
that 

(P.12) 2a(1 ,1)  + (s  - 1)2a(2,2) + (r '  -s)2aM(2) -f 2 0 

for each i = A,B. If carrier i adds a direct connection between h, and a city g' such that g' E Vj 
and g' E v',i # j ,  its net gain is 

It follows from (A41 and (P.12) that the gain is positive. Thus, s = r A= rB. 
Finally, suppose that r '  < n - 1.Then there exists a city g that is not connected to any city in the 

component. It is easy to show that profitability of components implies that each carrier i can gain by 
connecting city g to h,. Hence, if s> 0, then s = r' = n - 1 and X A =x BE H,-
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Case 2 (Disjoint hubcities): In this case, none of the components of the equilibrium networks X A  
and xBshare a hubcity. We show that xi must be single hub-spoke component. Suppose carrier A 
has two hub-spoke components, C: and c;, spanning respectively the sets of cities lit and v;, 
with hubcities hf  and h t .  We consider several subcases. 

(ii-a) Consider a component of x B ,  C B ,  spanning a set V B ,with hubcity h B  and suppose that hi4 
and h t  are elements of V B  and h f ,  h t  # hB. The top panel of Figure 4 illustrates this situation. 
Without loss of generality, designate hf  as a hubcity that is not directly connected to hB. By 
dropping the direct connections in C: and directly connecting nonhubcities of lit to h t ,  carrier A 
obtains the network depicted in the bottom panel of Figure 4. It services all of the city-pairs 
indirectly connected in C: using h t  rather than h f .  Thus, it loses no a(2;) terms with this 

CARRIERA 

CARRIERB 

-CARRIERS A m B 

FIGURE4 
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transformation. Since cB and C: are components, A retains the same numbers of v,(l) and 
v(1,2) terms although these are obtained in different city-pair markets. However, A gains additional 
~ ( 2 ,. ) s  by connecting cities in v;' to cities in v;. These are positive by (A5). 

(ii-b) Consider next two components of xB,clBand C!, spanning sets V: and V: with hubcities 
hf and hf respectively, and where hf'Ev;, h$ E v:, hf'# hf, and ht # hf.We will show that 
connecting hf'and ht yields carrier A higher profits. Suppose first that hf is not directly connected 
to any city in V: except possibly for h; as depicted in the top panel of Figure 5. Then the profits A 
obtains from Cf'are bounded by 

where r ,  is the number of direct connections in ~ f ' .By connecting hf to ht,A gains 2viW(l) + (r, 
- 5)2~,(2) + 52~r(2,1)-f,where <=1 if hf E v;' and (= 0 otherwise. Since (P.13) is nonnega- 
tive by hypothesis and ~ ( 2 , l )  is positive by (A5), the gain is positive, a contradiction. 

CARRIER A 

CARRIER B 

FIGURE5 
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Suppose next that hf' is directly connected to at least one city in V/ different from hf as 
depicted in the bottom panel of Figure 5. Let k t  denote the number of cities in V: 'P V B ,t = 1,2, 
and let k3 be the number of cities in V? that are not in V: u v;. Directly connecting hf' and h t  
yields A at least 

where 5 = 1 if h t  E V( and 5 = 0 otherwise. The profitability of a direct connection between hf 
and a city g in V! different from hB implies 

Hence, the claim follows since, by (A4), v(2,2) is positive. 
(ii-c) Lastly, suppose h t  is not spanned by x B .Then it is easily verified that the transformation 

outlined in subcase (ii-a) increases profits. Q.E.D. 
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